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The age distribution of mortality 
from novel coronavirus disease 
(COVID‑19) suggests no large 
difference of susceptibility by age
Ryosuke Omori1*, Ryota Matsuyama2 & Yukihiko Nakata3

Among Italy, Spain, and Japan, the age distributions of COVID-19 mortality show only small variation 
even though the number of deaths per country shows large variation. To understand the determinant 
for this situation, we constructed a mathematical model describing the transmission dynamics and 
natural history of COVID-19 and analyzed the dataset of mortality in Italy, Spain, and Japan. We 
estimated the parameter which describes the age-dependency of susceptibility by fitting the model to 
reported data, including the effect of change in contact patterns during the epidemics of COVID-19, 
and the fraction of symptomatic infections. Our study revealed that if the mortality rate or the fraction 
of symptomatic infections among all COVID-19 cases does not depend on age, then unrealistically 
different age-dependencies of susceptibilities against COVID-19 infections between Italy, Japan, and 
Spain are required to explain the similar age distribution of mortality but different basic reproduction 
numbers (R0). Variation of susceptibility by age itself cannot explain the robust age distribution in 
mortality by COVID-19 infections in those three countries, however it does suggest that the age-
dependencies of (i) the mortality rate and (ii) the fraction of symptomatic infections among all COVID-
19 cases determine the age distribution of mortality by COVID-19.

Since its emergence, coronavirus disease 2019 (COVID-19) has resulted in a pandemic and has produced a huge 
number of cases worldwide1. As of May 29, 2020, the number of confirmed cases in Italy was 382.3 (per 100,000 
population), with 507.2 in Spain, and 13.2 in Japan1. Of those infected, it has been reported that elderly individu-
als account for a large portion of fatal cases inducing a large heterogeneity in the age distribution of mortality2–4.

The expected value of mortality (the number of deaths, hereafter referred to as mortality) is calculated as the 
product of the number of cases and the mortality rate among cases (hereafter referred to as morality rate). As the 
background mechanism of the heterogeneity of mortality by age, the association of two epidemiological factors 
with mortality can be considered: (i) the age-dependency of susceptibility to infection, which is related to the 
heterogeneity in the number of cases, and (ii) the age-dependency of severity, which is related to the heterogeneity 
in the mortality rate, e.g. the rate of becoming a symptomatic, severe, or fatal case among infected individuals. 
For the first factor, a high susceptibility for infection will generate a larger number of infections and result in an 
increase in fatal cases. The possibility of heterogeneity in susceptibility by age was pointed out by the analysis of 
epidemiological data reported from Wuhan, China4–6 and from Iceland7. For the second factor, an increase in 
severity will result in a higher mortality rate and subsequently a rise in the number of fatal cases. This assumption 
is also reasonable because elder age as well as the existence of comorbidities, which are likely with aging, have 
been reported as risk factors for severe COVID-19 infections8–13. Although not yet shown in relation to severe 
acute respiratory syndrome coronavirus 2 (SARS Cov-2), which is the causal agent of COVID-19, the presence 
of age-dependent enhancement of severity has been suggested in SARS coronavirus by the analysis of the innate 
immune responses in the BALB/c mouse model14–16. Additionally, it has been suggested that antibody-dependent 
enhancement (ADE) can contribute to the formation of the observed age-dependency of severity, as suggested 
in SARS and Middle East respiratory syndrome (MERS) cases17–22.
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Interestingly, the age distribution of mortality by COVID-19 (the distribution of the proportion of deaths per 
age group among all deaths), is similar between Italy, Japan, and Spain, even though the number of deaths are 
quite different among them23–25 (Fig. 1). The reported number of deaths was 3 in 0–9 years old (yo), 0 in 10–19 
yo, 11 in 20–29 yo, 58 in 30–39 yo, 257 in 40–49 yo, 1,051 in 50–59 yo, 3,107 in 60–69 yo, and 25,038 in 70 + yo 
in Italy as of May 13, 2020. In Japan, that was 0 in 0–9 yo, 0 in 10–19 yo, 0 in 20–29 yo, 2 in 30–39 yo, 8 in 40–49 
yo, 16 in 50–59 yo, 44 in 60–69 yo, and 330 in over 70 + yo as of May 7, 2020. In Spain, that was 2 in age 0–9 yo, 
5 in 10–19 yo, 23 in 20–29 yo, 61 in 30–39 yo, 198 in 40–49 yo, 607 in 50–59 yo, 1669 in 60–69 yo, and 16,253 in 
over 70 + yo as of May 12, 2020. According to projections by the United Nations26, the population size for 2020 
per 1,000,000 was 4.99 in 0–9 yo, 5.73 in 10–19 yo, 6.10 in 20–29 yo, 7.00 in 30–39 yo, 9.02 in 40–49 yo, 9.57 
in 50–59 yo, 7.48 in 60–69 yo, and 10.55 in 70 + yo in Italy. In Japan, that was 10.18 in 0–9 yo, 11.27 in 10–19 
yo, 12.15 in 20–29 yo, 14.46 in 30–39 yo, 18.47 in 40–49 yo, 16.54 in 50–59 yo, 15.88 in 60–69 yo, and 27.54 in 
70 + yo. In Spain, that was 4.23 in 0–9 yo, 4.74 in 10–19 yo, 4.62 in 20–29 yo, 5.90 in 30–39 yo, 7.94 in 40–49 yo, 
7.05 in 50–59 yo, 5.34 in 60–69 yo, and 6.94 in 70 + yo. The large difference in the number of deaths between 
the countries suggests a large difference in their basic reproduction numbers, R0s. An independency between 
age distribution of mortality by COVID-19 and R0 is suggested. From this independency of age distributions of 
mortality from R0, it can be expected that the contribution of heterogeneity in susceptibility by age to forming the 
age distribution of mortality is small. That is because, as we will show in this paper, though the age-dependency 
of severity will naturally produce a proportional effect on the distribution of mortality and result in the forma-
tion of robust distributions, when the age-dependency of susceptibility forms the age distribution of mortality, 
the age distribution of mortality highly depends on R0 and shows variability.

To understand the background of robust age distribution of mortality with varied R0, we constructed a math-
ematical model describing the transmission dynamics of COVID-19 and analyzed the impact of age-dependent 
susceptibility on the age distribution of mortality. The heterogeneity in social contacts by age may also contribute 
to the age distribution of mortality. Our model took into account the heterogeneity in social contacts by age and 
country, and the effect of behavioral change outside of the household during the outbreak. We also estimated 
and compared the age-dependent susceptibility in Japan, Italy, and Spain to argue the existence of heterogeneity 
in susceptibility among age groups.

Results
Our result shows variation of susceptibility among age groups measured by the exponent parameter φ can explain 
the age distribution of mortality by COVID-19 (Fig. 2a). However, the age distribution of mortality formed by 
the age-dependency of susceptibility is influenced by the value of R0 (Fig. 2b), which cannot explain the similarity 
in age distributions of mortality among Italy, Japan, and Spain. On the other hand, if susceptibility is constant 
among age groups, the impact of R0 is quite small on the age distribution of mortality (Fig. 3).

Assuming that the age-dependency of mortality by COVID-19 is determined by only age-dependent sus-
ceptibility (model 1), i.e., the mortality rate does not depend on age, the exponent parameter, φ, describing the 
variation of susceptibility among age groups for each country, Italy, Japan, and Spain, was estimated as shown 
in Fig. 4. From the difference of the R0 value and country, the estimated value of φ is largely varied. The impact 
of reductions in contacts outside of the household on the estimated value of φ was small. The estimate of φ in 
Italy, assuming a range of R0 = 2.4–3.327,28 was 15.0 (95% CI 14.0–16.0), 16.3 (95% CI 14.9–17.7), and 16.9 (95% 
CI 15.4–18.4) for 80%, 40%, and no reduction in contacts outside of the household. For Japan, the estimate of 
φ assuming R0 = 1.729 was 4.2 (95% CI 3.7–4.9), 5.5 (95% CI 4.9–6.3), and 6.1 (95% CI 5.4–6.9) for 80%, 40%, 
and no reduction in contacts outside of the household. When it comes to Spain, the estimate of φ assuming an 
R0 = 2.930 was 10.5 (95% CI 10.4–10.6), 11.7 (95% CI 11.6–11.9), and 12.3 (95% CI 12.2–12.5) for 80%, 40%, and 
no reduction in contacts outside of the household.
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Figure 1.   The age distribution of mortality by COVID-19 in Italy reported on 13th May 2020, Japan reported 
on 7th May 2020, and Spain reported on 12th May 2020. Circle, square, and “+” denote Italy, Japan, and Spain.
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The estimates of φ, assuming that the mortality by COVID-19 infections depends on age but the fraction of 
infections becoming symptomatic does not depend on age (model 2), were also varied by the value of R0 and by 
country (Fig. 5, s1 and s2). Employing the same assumptions of R0 value, the estimate of φ in Italy was 5.2 (95% 
CI 4.7–5.7), 5.9 (95% CI 5.3–6.4), and 6.1 (95% CI 5.5–6.6) for 80%, 40%, and no reduction in contacts outside 
of the household. For Japan, the estimate of φ was 0.0 (95% CI 0.0–1.0), 0.0 (95% CI 0.0–1.2), and 0.0 (95% CI 
0.0–1.4) for 80%, 40%, and no reduction in contacts outside of the household. For Spain, the estimate of φ was 
4.1 (95% CI 2.5–5.0), 4.8 (95% CI 2.6–5.8), and 5.1 (95% CI 2.6–6.2) for 80%, 40%, and no reduction in contacts 
outside of the household.

Discussion
In the present study, we explored the role of susceptibility to COVID-19 in explaining the age distribution of 
mortality by COVID-19. Interestingly, the age distributions of mortality from COVID-19 are quite similar 
between Italy, Japan, and Spain (Fig. 1). When comparing the age distributions of mortality, only the comparison 
between Italy and Spain is significant (p < 0.05 in Wilcoxon rank sum test with Bonferroni correction). On the 
other hand, the numbers of deaths are quite different (29,525 for Italy, 400 for Japan, 18,818 for Spain). Indeed, 
R0 values are largely different: 2.4–3.3 for Italy27,28, 1.7 for Japan29, and 2.9 for Spain30. If the variation of mortality 
by age is determined by only the age-dependency of susceptibility, the age distribution of mortality is affected by 
R0 as shown in Fig. 2b. However, we observed a similarity in age distributions of mortalities between Italy, Japan, 
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Figure 2.   The sensitivity of (a) age-dependency of susceptibility and (b) transmission coefficient β against 
age distribution of mortality when age-independent mortality was assumed. In panel (a), all parameters 
except the exponent parameter φ, describing the variation of susceptibility among age groups, were fixed and 
parameterized as R0 = 2.9 in the setting for Spain. In panel (b), all parameters parameterized as the setting for 
Spain (φ = 12.3) were fixed except transmission coefficient β.
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Figure 3.   The sensitivity of transmission coefficient β against age distribution of mortality when it was 
assumed that age-dependent mortality was proportional to cCFR per age group. All parameters were fixed and 
parameterized as the setting for Spain except the transmission coefficient β.
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and Spain where their R0s are quite different. Indeed, unrealistically different φs among these three countries 
are required to explain their age distribution of mortality for both settings, (i) age-independent mortality, and, 
(ii) the fraction of infections that becomes symptomatic among all COVID-19 cases, fs, does not depend on age. 
Although we cannot fully reject the existence of age-dependency in susceptibility, our results suggest that it does 
not largely depend on age, but rather that age-dependency in severity highly contributes to the formation of the 
observed age distribution in mortality.

The estimates of φs assuming age independency in symptomatic infections were smaller than those that 
assumed age independency in mortality. This suggests that the age-dependency of the confirmed case fatality 
rate (cCFR), which can be biased by the age-dependent difference of the fraction of symptomatic infections 
among all cases, partially explains the age distribution in mortality. Indeed, when we assumed that the fraction 
of symptomatic infections was not dependent on age, the estimate of φ in Japan was close to zero in all scenarios 
regarding the fraction of symptomatic infections, meaning that susceptibility is constant among age groups 
(Fig. 5). Although we observed φs not close to zero in Italy and Spain, this does not mean straightforwardly that 
susceptibility is age dependent because there is room for an alternative explanation: not susceptibility, but an 
age-dependent fraction of symptomatic infections can explain this age-dependency. Unfortunately, as we do not 
yet have detailed data regarding the age-dependent fraction of symptomatic infections and the rate of diagnosis 
in COVID-19, we cannot conclude which factors (i.e., susceptibility or the fraction of symptomatic infection 
among all cases) contributed to the observed age-dependency.

Wu et al.4 showed variation of susceptibility to symptomatic infection by age. This susceptibility can be 
expressed as the product of the susceptibility and the fraction of symptomatic infection among all cases. To 
accurately understand susceptibility (i.e., without the constraint of the symptom onset), estimates of the age-
dependent fraction of symptomatic infections is required.

To understand the mechanism of age-dependency of mortality by COVID-19, an accurate age-dependent 
mortality rate is required. The data of mortality by COVID-19 infections used in this study might not cover all 
mortalities by COVID-19 infections. To estimate the age-dependent mortality rate, an accurate estimate of the 
case fatality rate is required. However, the number of cases, which is the denominator of the case fatality rate, is 
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Figure 4.   The estimate of exponent parameter φ describing the variation of susceptibility among age groups 
using model 1 and assuming that mortality rate does not depend on age. True and broken lines represent the 
maximum likelihood estimates and 95% confidence intervals, respectively.
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difficult to estimate for COVID-19 due to changes in the testing rate31–33, the change of case definition34, selection 
biases35, and the delay between the onset of symptoms and death12,36–38 as were the cases we experienced in the 
surveillance of other emerging diseases 39,40. To address this problem, implementation of active epidemiological 
surveillances, such as a large-scale cohort study including real-time detection of infections, should be considered.

From the modelling perspective on mortality by Covid-19, age-dependency of severity should be carefully 
taken into consideration. In particular, in the mathematical models of ADE, previous models employed three 
types of assumptions41, the assumption of: increasing susceptibility to infection42,43, increasing transmissibility 
once infection occurred42,44,45, and increasing severity and/or mortality associated with infection46. Based on 
our results and from the biological/epidemiological observations of past SARS and MERS cases, the “increasing 
severity” assumption should be taken into account when analyzing SARS Cov-2 epidemics.

We modelled the age-specific susceptibility as a power law function based on the monotonic increase of 
mortality by COVID-19 over age as seen in Fig. 1. The power law function is widely used to model heteroge-
neity, e.g., the heterogeneity in risks of sexually transmitted infections47. Although our model for age-specific 
susceptibility covers a wide variation of monotonic changes, our results might be biased by this formulation if 
the susceptibility changes over age in non-monotonic fashion.

The increase in width of the confidence interval for the estimate of φ by increasing R0 values were observed 
in Fig. 5. To explain with the “left-skewed” age-distribution of mortality with high R0, a large φ is required since 
the higher R0 value decreased the heterogeneity of mortality by age (Fig. 2b) and the large φ increased the het-
erogeneity of mortality (Fig. 2a). The sensitivity of φ to the age-distribution of mortality becomes smaller when 
φ is larger (Fig. 2a), the large widths of the confidence intervals for the estimate of φ is necessary to explain the 
age-distribution of mortality when R0 is high.

In conclusion, the contribution of age-dependency to susceptibility is difficult to use to explain the robust age 
distribution in mortalities by COVID-19, and it suggests that the age-dependencies of the mortality rate and the 
fraction of symptomatic infections among all COVID-19 cases determine the age distribution in mortality from 
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Figure 5.   The estimate of exponent parameter φ describing the variation of susceptibility among age groups 
using model 2 and assuming that the fraction of infections that becomes symptomatic among all COVID-19 
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respectively.
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COVID-19. Further investigations regarding age-dependency on the fraction of infections becoming sympto-
matic is required to understand the mechanism behind the mortality by COVID-19 infections.

Materials and methods
Data.  We analyzed the number of mortalities caused by COVID-19 in Italy reported on 13th May 2020, Japan 
reported on 7th May 2020, and Spain reported on 12th May 2020. The data were collected from public data 
sources in each country23–25.

Model.  A simple SEIRD model taking into account mixing between age groups (model 1).  To understand 
the background of robust age distribution of mortality with varied R0, we employed a mathematical model de-
scribing transmissions of COVID-19. Clinical observations suggest that both asymptomatic and symptomatic 
cases are infectious after the latent period48,49, we used a simple age-structured SEIRD (susceptible-exposed-
infectious-recovered-dead) model, which can be written as;

where Sn, En, In, Rn and Dn represent the proportion of susceptible, latent, infectious, recovered and dead among 
the entire population, and the subscript index n denotes age group. We stratified the entire population by into 
eight groups, n = 1, 2, 3, 4, 5, 6, 7, and 8 for < 10 yo, 10–19 yo, 20–29 yo, 30–39 yo, 40–49 yo, 50–59 yo, 60–69 yo, 
and 70 + yo. β, kn,m, ε, γ and δ represent a transmission coefficient, an element of the contact matrix between age 
group n and m, the progression rate from latent to infectious, recovery rate and mortality rate by COVID-19 
infections, respectively. σn denotes the susceptibility of age group n. For the sake of simplicity, based on the short 
study duration of COVID-19 epidemics compared to the length of a human lifespan, births and deaths from 
causes other than COVID-19 were ignored. To take into account the effect of behavioral changes outside of the 
household during the outbreak, kn,m is decomposed by a matrix for contacts within household kin,n,m and that 
for contacts outside the household kout,n,m;

where α denotes the reduced fraction of contacts outside of the household. We modelled age specific suscepti-
bility as

where c is susceptibility among age group 1 and a constant among all age groups, φ denotes the exponent 
parameter describing the variation of susceptibility among age groups. An increase in φ means an increase in the 
variation of susceptibility among age groups, and φ = 0 means that susceptibility is equal among all age groups.

SEIRD model taking into account mixing between age groups, asymptomatic/symptomatic, and age‑dependency 
of mortality by COVID‑19 (model 2).  Model 1 does not classify the cases into asymptomatic and symptomatic 
cases explicitly. If the progression of disease is largely different between asymptomatic and symptomatic cases, 
the estimates using model 1 can be biased. In addition, the age-dependency of mortality by COVID-19 infec-
tions is not taken into account. Model 2 takes into account both the different progression of disease between 
asymptomatic and symptomatic cases and the age-dependency of mortality by COVID-19 infections;
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where Is,n and Ia,n represent the proportion of symptomatic and asymptomatic cases among age group n. Other 
compartments are the same as model 1. fs represents the fraction of symptomatic infections among all COVID-
19 cases and δn represents the mortality rate by COVID-19 infection among age group n. γs and γa denote the 
recovery rates among symptomatic and asymptomatic cases. Other parameters are the same as model 1.

Parameterizations.  We parameterized ε and γ using values from a previous modelling study of COVID-
1948,50,51. The average length of the latent period (i.e., 1/ε) was set to 6.4 days48,50, assuming that the latent period 
is equal to the incubation period, and the average length of the infectious period (i.e., 1/γ) was 7 days48,51 for 
model 1. In model 2, to take into account the different infectious period between symptomatic and asympto-
matic infections, we set an average length of infectious period among asymptomatic cases (i.e., 1/γa) as 9 days49 
and an average length of infectious period among symptomatic cases (i.e., 1/γs) as 7 days. We referred to the 
contact matrices for Italy, Japan, and Spain from Prem et al.52. β and c were controlled such that the basic repro-
duction number, R0, becomes arbitral values. R0 was calculated by constructing a next generation matrix53,54 
using each country’s demographic data obtained from a public data source26.

In terms of parameterization for mortality rate by COVID-19 infection, a reliable estimate of δn for COVID-19 
is difficult to obtain. Due to the uncertainty of the fraction of symptomatic infections per age group, δn is dif-
ficult to estimate from observed data, i.e., the confirmed case fatality rate among age group n (cCFRn). Since an 
estimate of δn is difficult to obtain, we employed two different settings (i) δn is assumed to be a constant among 
all age groups as assumed in the model 1, i.e., δn = δ for any age group n, or, (ii) δn is calculated from cCFRn 
assuming that the fraction of symptomatic infections among all COVID-19 cases (fs) is not dependent on age 
as assumed in model 2.

In the setting for model 1, the value of δ is not required to estimate Dn once the value of R0 is given. We 
calculated Dn by calculating the proportions of recovered persons per age group among all recovered per-
sons Rn(∞)/

∑

n Rn(∞) instead of Dn(∞)/
∑

n Dn(∞) . In our model, shown in Eq. (1–5), Rn(∞)/
∑

n Rn(∞) 
is determined by the value of R0 completely when all parameter values other than β and δ are fixed, and 
Dn(∞)/

∑

n Dn(∞) = Rn(∞)/
∑

n Rn(∞) if δn  = 0 . The proof can be found in the Supplemental text.
The assumption in model 1, δn is constant among all age groups, may be too strong for the COVID-19 epi-

demic. To take into account the age-dependency of mortality by COVID-19, δn was calculated from the cCFRn 
assuming that fs is not dependent with age. For the setting in model 2, assuming three scenarios; fs = 0.05, 0.25, 
and 0.5, δn for each country were calculated using cCFRn in each country. We obtained δn by solving cCFRn = δn/ 
(δn + γs).

Fitting.  We calculated the proportions of deaths in the age group n among all deaths, Dn 
( = Dn(∞)/

∑

n Dn(∞) ), and fitted them to the observed data in each country. We solved model 1 shown in 
Eqs. (1–5) and model 2 shown in Eqs. (8–13) numerically, and Dn was calculated after sufficient time was given 
to finish the epidemics. We estimated φ using a log likelihood function describing the multinomial sampling 
process of deaths per age group;

Maximum likelihood estimates of φ with given R0 were obtained by maximizing Eq. (14) and the profile 
likelihood-based confidence intervals were computed.

Data availability
All data collected and analyzed during this study are included in this published article and its Supplementary 
Information files.
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